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Abstract To describe the annihilation of spatially separate electrons and holes in
a disordered semiconductor, we suggest the use of a model based on the spatially
inhomogeneous, nonlinear Smoluchowski equations with random initial distribution
density. Furthermore, we present a Monte Carlo algorithm for solving this equation.
Our approach provides a general method for the computation of the electron-hole
kinetics in inhomogeneous media, taking into account both their radiative and non-
radiative recombination by tunneling as well as their diffusion. To validate the sim-
ulation algorithm, we compare our model with a more general approach based on
a statistical description and the Kirkwood closure of the Bogoliubov–Born–Green–
Kirkwood–Yvon hierarchy equations. A comparison with recent experimental results
is also discussed.
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1 Introduction

The fluctuation-limited kinetics of diffusion-controlled reactions plays a crucial role in
many physical, chemical and biological processes (see, e.g., Ref. [12,30]). However,
the diffusion equations are often treated macroscopically, ignoring density fluctuations.
In the absence of nonlinear interactions such as chemical reactions, the macroscopic
diffusion equations govern uniform concentration distributions. Thermal fluctuations,
initial density inhomogeneities, and the randomness of reaction events lead to non-
uniform concentration fields, thus drastically changing the time dependence of the
density for asymptotically long times.

For instance, let us consider a reaction of two types of particles, A and B, A+ B →
P . The simplest kinetic approach to this reaction first considered by Smoluchowski
[29] is based on the rate equations

dn A/dt = −g n A(t)nB(t), dnB/dt = −g n A(t)nB(t), n A(0) = a0, nB(0) = b0

where g is the reaction rate. For diffusion-controlled reactions, Smoluchowski obtained
g = 4π Dr0, where r0 is the particle radius and D is the relative diffusion coefficient.
This equation can be solved explicitly: n A(t) = a0/(1 + a0gt) for a0 = b0, and
n A(t) = a0 f0/[b0 exp( f0gt) − a0] for a0 < b0, where f0 = b0 − a0.

This description of chemical reactions implies conditions such that the rate at which
the reactants approach each other (the diffusion rate) is much larger than the rate at
which they react chemically with each other (the reaction rate). Hence, the basic
assumption underlying this reaction is a homogeneous spatial distribution of parti-
cles during the reaction at any time instant, i.e., the components A and B should
be always perfectly mixed. Independent of the dimension d, this assumption results
in solutions with a long-time asymptotics ∼ exp(− f0gt) if a0 �= b0, and ∼ 1/gt
if a0 = b0.

Fluctuations lead to drastically different solutions. In particular, spatial correlations
of the particles cause segregation, i.e., the formation of spatially separated clusters
composed entirely of particles of either type A or B. The formation of these clusters
slows down the reaction dramatically, because only particles near the boundary of
the clusters are likely to react, while particles inside the cluster have to diffuse to
the boundary before they have a chance to react with a particle of the other type. In
other words, fluctuations induce the formation of a mosaic of continuously growing
domains which contain only one of the two components, A or B. It was first shown
by Ovchinnikov and Zeldovich [21] that in this case, the long-time asymptotics is
∼ t−3/4 if a0 = b0. Generally, for a0 = b0, the asymptotics ∼ t−d/4 is valid for any
dimensionality d ≤ 4, while for d ≥ 4, ∼ t−1. This law was obtained by several
authors using different arguments (see, e.g., Refs. [2,16,21]).

This asymptotics follows from a more general quantity, namely, the correlation
function Bn(r1 − r2; t) = 〈n(r1, t)n(r2, t)〉. The concentration n(r, t) is assumed
to satisfy the diffusion equation ∂n(r, t)/∂t = D�n(r, t) with the random initial
condition n(r, 0) = n0(r) where n0(r) is a Gaussian random field with the correlation
〈n0(r1, t)n0(r2, t)〉 = δ(r1 − r2). Using the representation
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n(r, t) =
∫

IRd

G(r, r′; t)n0(r′)dr′

with Green’s function G(r, r′; t) = (
√

4Dtπ)−d/2 exp {− |r−r′|2
4Dt }, we obtain

Bn(r1 − r2; t) = 〈n(r1, t)n(r2, t)〉
=

∫

IRd

∫

IRd

G(r1, r′; t)G(r2, r′′; t)〈n0(r′)n0(r′′)〉dr′dr′′.

Since 〈n0(r1)n0(r2)〉 = δ(r1 − r2), it follows that

〈n(r1, t)n(r2, t)〉 =
∫

IRd

∫

IRd

G(r1, r′; t)G(r2, r′; t)dr′

= C(Dt)−d/2 exp

{
−|r1 − r2|2

8Dt

}

with C = (4π)−d/2. This result implies that 〈n2〉 = Bn(0; t) = C(Dt)−d/2, hence,
〈n〉 ∼ (〈n2〉)1/2 ∼ t−d/4.

If the densities of the components are not equal, the asymptotics is modified. For
instance, if a0 < b0, n A ∼ a0 exp(−√

t) for d = 1, n A ∼ a0 exp{−t/ log(t)} for
d = 2, while for d ≥ 3, the asymptotic law again coincides with the homogeneous
case: n A ∼ a0 exp(−t) [2].

In all previous considerations, both types of particles, A and B, are assumed to
be able of diffusion. If, e.g., the particles of type B are immobile, and a0 < b0, the
asymptotics has the form n A ∼ exp(−Ctd/d+2) (see Ref. [2]). For a0 = b0, n ∼ t−1/2

for d = 3. For d = 2, the exact asymptotics is unknown, but we will show numerically
that it is most likely close to the one obtained in three dimensions.

Note that this difference between the homogeneous and fluctuation-limited kinetics
holds regardless of the type of reaction between the particles. In particular, it applies
to the Smoluchowski coagulation equation. Coagulation, or coalescence, is a process
by which two particles collide and adhere, or coagulate. There are many different
mechanisms that bring two particles to each other: molecular diffusion, gravitational
sedimentation, free molecule collisions, turbulent motion of the host gas, acoustic
waves, density, concentration and temperature gradients, electric charges, etc. (see,
e.g., Refs. [14,33]). Assuming a number density ni of particles Ai consisting of i
monomers of the same type, the coalescence reaction Ai + A j → Ai+ j is governed
by the nonlinear Smoluchowski equation in its most simple homogeneous form:

∂nl

∂t
= 1

2

∑
i+ j=l

Ri j ni n j − nl

∞∑
i=1

Rli ni (1)

where Ri j = R ji is a coagulation coefficient describing the frequency of collisions
between the particles Ai and A j . Note that the equation governs the aggregation of a
set of clusters in the bulk, and the solution does not depend on the spatial coordinates.

123



654 J Math Chem (2015) 53:651–669

Taking into account the generation of particles Al with the external rate Fl , and
allowing for the diffusion of the particles in between their collisions with the diffusion
coefficient Dl , the coagulation equation reads

∂nl

∂t
= Dl�nl(r, t) + 1

2

∑
i+ j=l

Ri j ni n j − nl

∞∑
i=1

Rli ni + Fl . (2)

The numerical solution of this equation is a difficult problem: for realistic systems
of coagulating particles, many thousands of equations have to be solved, and the
functions nl(r, t) depend both on the spatial and temporal coordinates r and t . To
accurately keep track of rapid changes of nl(r, t) in time, the step size �t has to be
chosen so small that algorithms based on finite-difference or finite-element methods
would need enormous computational resources. For the solution of Eq. (2), Monte
Carlo algorithms are thus the methods of choice.

Note that Eq. (2) describes the coagulation of particles of one type: the particle
clusters differ only in their size. More generally, one can consider particles character-
ized by size, mass, or chemical composition. Assuming, for example, the mass m of a
cluster to be a continuously varying quantity, the spatially homogeneous coagulation
equation governing the particle dynamics can be written in the form

∂n(m, t)

∂t
= 1

2

m1∫

0

. . .

ms∫

0

R(u, m − u)n(m − u, t)n(u, t)du

− n(m, t)

∞∫

0

. . .

∞∫

0

R(u, m)n(u, t)du. (3)

Here, mi is the mass of the i-th component in a particle, and m is a vector of com-
positions (m1, . . . , ms), where s is the total number of components; n(m, t)dm is the
number of particles having mass of component i in the range [mi , mi + dmi ] at time
t , and R(u, m) = R(m, u) is the binary coagulation coefficient.

The numerical solution of the Smoluchowski-type equations discussed above is a
highly challenging problem even for only a few particle types in the spatially homoge-
neous case. We will deal in this paper with only three particle types (electrons, holes,
and nonradiative recombination centers), and neglect the implicit formation of exci-
tons, trions, biexcitons, or other excitonic complexes. The first and major difficulty of
this apparently simple problem arises from the fact that it is inhomogeneous in space.
The second difficulty of our problem is caused by the low particle densities. Third,
we are interested in the particle kinetics for very long times. Finally, we deal with
stochastic initial conditions, so we have to take an average over the ensemble of initial
distributions. Conventional numerical methods are not suitable for handling problems
of this kind, and we will therefore extend the Monte Carlo methods we have developed
previously in Refs. [15,24–26] to the case we deal with in this paper.

The main idea of Monte Carlo methods for solving the spatially homogeneous
Smoluchowski equation lies in the probabilistic interpretation of the evolution of the
interacting particles as a Markov chain (see, e.g., Ref. [15]). In Refs. [14] and [26], we
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have applied the Monte Carlo technique to the inhomogeneous Smoluchowski equa-
tion without diffusion term. In this paper, we will consider the general inhomogeneous
case with diffusion. Note that the direct Monte Carlo simulation of the particle inter-
actions and diffusion jumps on a grid is computationally expensive, because one has to
consider a huge number of jumps per one particle interaction. We suggest a new Monte
Carlo method for this case, introducing ”long diffusion jumps” which accelerate the
simulation process significantly.

The Smoluchowski equation for homogeneous particle densities is a mean-field
approach, where the evolution of the mean number of particles is governed by the col-
lision frequency on average. These mean-field equations do not involve fluctuations,
and we cannot extract information on the particle correlations and other statistical
properties of the particle dynamics. Fluctuations can be introduced in the inhomoge-
neous Smoluchowski equations by, for example, taking the initial solution as a random
distribution. Alternatively, the diffusion coefficient may be taken to be random, the
interaction kernel R may depend on a random parameter, the external source F may
involve random fluctuations, and even the boundary conditions may produce random
perturbations. We can derive the mean-field Smoluchowski equations from these ran-
dom equations by an averaging and closure procedure. To compare the mean-field
approach and the approach based on the random equations and closure, we will derive
equations for the mean particle concentrations and their correlations.

In this paper we deal with the recombination of electrons and holes in an inhomoge-
neous semiconductor (see, e.g., [7,11,28]). This topic has attracted considerable exper-
imental and theoretical interest during the past five decades since the optoelectronic
properties of technologically important materials have been found to be controlled
by the electron-hole recombination dynamics. Recently, it has been discovered that
(In,Ga)N/GaN quantum wells, used in light-emitting diodes for solid-state lighting,
exhibit properties analogous to amorphous semiconductors due to the spatial local-
ization of charge carriers and their recombination as spatially separate electron-hole
pairs [3,5,8].

We consider that both electrons and holes are able to diffuse, and will recombine
with each other either radiatively (i.e., giving rise to the generation of a photon) or
nonradiatively via immobile recombination centers. Since electrons and holes are,
in general, spatially separated, these recombination processes are considered to be
induced by tunneling from one localization site to the other, and to be assisted by
diffusion, allowing electrons and holes to meet each other in the same spatial location.
What governs the recombination dynamics are both the fluctuations of the initial spatial
distributions of electrons and holes and the fluctuations in their diffusivity resulting
from the random depth of the localization sites. Hence, spatial correlations are crucial
for the evaluation of the mean concentrations. We will see that ignoring even a part of
these correlations leads to considerable deviations from the exact results.

2 The mean field equations

We consider electrons, holes and nonradiative recombination centers distributed in
a domain G with densities n(r; t), p(r; t), and N (r), respectively. A part of these
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recombination centers with a density N+(r; t) are in the state waiting for capturing
an electron, while the remaining centers N (r) − N+(r; t) are waiting for a hole.

The radiative recombination of spatially separate electron-hole pairs is due to
tunneling with the rate B(r) = B0 exp(−r/a), where r is the distance between
electron and hole. The decrease of the electron density at the location r due to
the recombination with holes in the vicinity is −n(r; t)

∫
B(|x|)p(r + x; t)dx. The

decrease of the electron density due to an interaction with a nonradiative recom-
bination center is described analogously: −n(r; t)

∫
bn(|x|)N+(r + x; t)dx. Here

bn(r) = bn0 exp(−r/an), and the same kernel is defined for the hole-recombination
center interaction: bp(r) = bp0 exp(−r/ap).

The electron can also diffuse spatially with a diffusion coefficient Dn(r) that may
vary randomly with the spatial position r. Altogether, the electron density thus follows
the equation

∂n(r; t)

∂t
= Dn(r)�n(r; t) − n(r; t)

∫
B(|x|)p(r + x; t)dx

− n(r; t)
∫

bn(|x|)N+(r + x; t)dx. (4)

Analogously, the holes are described by the equation

∂p(r; t)

∂t
= Dp(r)�p(r; t) − p(r; t)

∫
B(|x|)n(r + x; t)dx

− p(r; t)
∫

bp(|x|)[N (r + x) − N+(r + x; t)] dx. (5)

The number of recombination centers waiting for an electron is reduced when the
electron is captured, and increased when the hole is captured:

∂ N+(r; t)

∂t
= −n(r; t)

∫
bn(|x|)N+(r + x; t)dx

+ p(r; t)
∫

bp(|x|)[N (r + x) − N+(r + x; t)] dx. (6)

Without loss of generality, we assume that the initial numbers of electrons and holes
are equal (say, to n0). At the initial time t = 0, the electrons, holes, and recombination
centers are randomly distributed:

n(r; 0) =
n0∑

i=1

δ(r − ri ), p(r; 0) =
n0∑
j=1

δ(r − r j ), N (r; 0) =
N (0)∑
k=1

δ(r − rk). (7)

Here ri , r j , and rk are independent uniformly distributed random positions, and
N (0) is the total number of recombination centers. At t = 0, we can assume that all
recombination centers are waiting for an electron, i.e., N+(r; 0) = N (r; 0) if the
background doping density ns is zero. Finally, the experimentally observed radiative
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intensity I (t) is proportional to the photon flux φ(t) due to the generation of photons
by the radiative recombination of electrons and holes:

φ(t) =
〈∫

1

|G|dr
∫

B(|x|)n(r; t)p(r + x; t)dx
〉

(8)

where the angle brackets stand for the mathematical expectation with respect to the
initial random distribution of electrons, holes and recombination centers, and |G| is
the volume of the domain G. Since I (t) = h̄ωφ(t), where h̄ω is the photon energy,
we use the terms photon flux and intensity interchangeably.

The random fields n and p are statistically homogeneous and isotropic, imply-
ing that the correlation functions of n and p, and the cross-correlation function
Lnp(x, t) = 〈n(r, t)p(r +x, t)〉 depend only on |x|, the distance between r and r +x.
We denote by Knp(x, t) the normalized cross-correlation coefficient: Knp(x, t) =
Lnp(x, t)/n(t)p(t). Here n(t) = 〈n(r, t)〉 and p(t) = 〈p(r, t)〉, since the random
fields n and p are homogeneous. In this terms, the photon flux reads:

φ(t) = n(t)p(t)
∫

B(|x|)Knp(x, t)dx. (9)

At low temperatures, it may be a sensible approximation to neglect the first and third
terms in Eqs. (4) and (5), i.e., those related to diffusion and the nonradiative recombina-
tion centers. The model would then reduce to two partial integro-differential equations
for electrons and holes which contain only the radiative term:

∂n(r; t)

∂t
= −n(r; t)

∫
B(|x|)p(r + x; t)dx,

∂p(r; t)

∂t
= −p(r; t)

∫
B(|x|)n(r + x; t)dx. (10)

In this case, we have obviously φ(t) = − ∂n(t)
∂t = − ∂p(t)

∂t , provided the initial mean
concentrations n0 and p0 are equal.

Let us consider this last case in more details. In the next section we treat this pure
radiative recombination process of immobile electrons and holes from a statistical
viewpoint.

3 Correlation analysis

When new Monte Carlo methods are constructed and applied to simulate complicated
processes, it is imperative to validate them by solving simplified benchmark problems.
Let us thus consider the case of pure radiative recombination i.e., there is no diffusion,
no nonradiative recombination centers, and the process is governed by Eq. (10).

Taking the average over the initial distribution of electrons and holes and assuming
that this distribution is homogeneous and isotropic in space, we can rewrite Eq. (9) as
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∂n(t)

∂t
= −n(t)p(t)

∫
B(|x|)Knp(x; t)dx. (11)

Due to the initial conditions, the number of electrons is equal to the number of holes,
which also applies to their mean values n(t) = p(t), and Eq. (11) thus reads

∂n(t)

∂t
= −n2(t)

∫
B(|x|)Knp(x; t)dx. (12)

We are going to find the cross-correlation Knp(x; t) from a closed system of equations.
To this end we also need to introduce the correlation functions Ln , L p and the relevant
correlation coefficients Kn and K p:

Ln(x, t) = 〈n(r, t)n(r + x, t)〉 = n2(t)Kn(x, t),

L p(x, t) = 〈p(r, t)p(r + x, t)〉 = p2(t)K p(x, t). (13)

Since n(t) = p(t), the statistics of n and p are equal, and we thus use the notation
K (x, t) = K p = Kn .

Generally, when calculating the many-particle correlations Gm,k of n at points
r1, . . . , rm and p at points r̃1, . . . , r̃k , for Markovian random processes,

Gm,k(r1, . . . , rm; r̃1, . . . , r̃k) =
〈

m∏
i=1

n(ri , t)
k∏

j=1

p(r̃ j , t)

〉
,

and the following kinetic equations can be derived from the Bogoliubov–Born–Green–
Kirkwood–Yvon (BBGKY) hierarchy of equations (see, e.g., Eq. 2.15 in Ref. [1], and
the corresponding equations in Refs. [16,18]):

∂Gm,k

∂t
= −

m∑
i=1

k∑
j=1

B(ri − r̃ j )Gm,k −
m∑

i=1

∫
B(ri − r̃k+1)Gm,k+1 d r̃k+1

−
k∑

j=1

∫
B(r̃ j − rm+1)Gm+1,k drm+1. (14)

For G11 = Lnp, we obtain:

∂G11

∂t
= −B(r1 − r̃1)G11 −

∫
B(r1 − r̃2)G1,2 d r̃2 −

∫
B(r̃1 − r2)G2,1 dr2

(15)

with

G1,2 = 〈n(r1, t)p(r̃1, t)p(r̃2, t)〉 ≡ Lnpp
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and

G2,1 = 〈n(r1, t)n(r2, t)p(r̃1, t)〉 ≡ Lnnp.

We thus arrive at

∂Lnp

∂t
= −B(r1 − r̃1)Lnp −

∫
B(r1 − r̃2)Lnpp d r̃2 −

∫
B(r̃1 − r2)Lnnp dr2.

(16)

We next employ the Kirkwood [13] approximation:

Lnpp ≈ 〈n(r1, t)p(r̃1, t)〉〈n(r1, t)p(r̃2, t)〉〈p(r̃2, t)p(r̃1, t)〉
= n3 Knp(r1 − r̃1, t)Knp(r1 − r̃2, t)K (r̃1 − r̃2, t) (17)

and

Lnnp ≈ 〈n(r1, t)n(r2, t)〉〈n(r2, t)p(r̃1, t)〉〈p(r̃1, t)n(r1, t)〉
= n3 K (r1 − r2, t)Knp(r1 − r̃1, t)Knp(r2 − r̃1, t). (18)

Using Eq. (17), we obtain from Eq. (16)

∂Lnp

∂t
= −B(r)n2(t)Knp(r, t) − 2n3(t)Knp(r, t)

∫
B(r̃)K (r̃ − r, t)Knp(r̃, t) d r̃

(19)

with r = r1 − r̃1 where r̃ = r1 − r̃2 (or r̃ = r̃1 − r2). By differentiating Lnp =
n(t)p(t)Knp we also obtain:

∂Lnp

∂t
= n2(t)

∂Knp

∂t
+ 2n(t)Knp

∂n(t)

∂t

= n2(t)
∂Knp

∂t
− 2n3(t)Knp(r, t)

∫
B(r̃)Knp(r̃, t) d r̃.

Combining this result with Eq. (19) we arrive at the desired equation:

∂Knp(r, t)

∂t
= −B(r)Knp(r, t) − 2n(t)Knp(r, t)

∫
B(r̃)Knp(r̃, t)[K (r − r̃, t) − 1] d r̃. (20)

We proceed analogously for the correlation K . Differentiating Ln in Eq. (13), and
combining the result with the equation for G2,0 = Ln [employing the approximation
in Eq. (18)] yields:

∂K

∂t
= −2n(t)K (r, t)

∫
B(r̃)Knp(r̃, t)[Knp(r − r̃, t) − 1] d r̃. (21)
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These two equations are closed with the expression

∂n(t)

∂t
= −n2(t)

∫
B(r̃)Knp(r̃, t) d r̃. (22)

From the system of Eqs. (20)–(22), we can calculate the functions n, K , and Knp.
An interesting special case is obtained when assuming K = 1, i.e., when ignoring

the hole-hole and electron-electron correlations, and taking into account only the
electron-hole correlations. From Eq. (20), it follows that

∂Knp

∂t
= −B(r)Knp(r, t). (23)

with the solution

Knp(r, t) = exp{−B(r)t}. (24)

We can derive an expression for the photon flux in any dimension d. Indeed, substi-
tuting Eqs. (24) in (22) yields

∂

∂t

{ 1

n(t)

}
= �d

∞∫

0

B0 exp(−r/a) exp{−t B0 exp(−r/a)}rd−1dr, (25)

where �d is the surface area of a unit d-dimensional sphere. This equation can be
used to calculate the mean concentration n(t) and the photon flux φ(t). Generally, in
d dimensions, the long-time asymptotics in the case of purely radiative recombination
is n(t) ∼ [log(t)]−d if only the electron–hole correlations are taken into account (see
also Ref. [16]), i.e., for two dimensions

φ(t) ∼ t−1 (log t)−3. (26)

If the electron-electron and hole-hole correlations are taken into account in addition,
the system of Eqs. (20)–(22) leads to an asymptotics n(t) ∼ [log(t)]−d/2. For the
photon flux, this result implies φ(t) ∼ t−1 [log(t)]−(d/2+1), i.e.,

φ(t) ∼ t−1 (log t)−2 (27)

for the two-dimensional case considered here.
At the first glance, Eq. (25) is similar to expressions derived in previous studies of

the radiative recombination of electrons and holes in disordered media. For example,
in Ref. [9], the authors used the linear Smoluchowski equation [29] for the probability
density function p(r, t) of the electron-hole pair separation r with the recombination
coefficient proportional to B0 exp(−r/a). Taking into account electron-hole corre-
lations, but ignoring the electron-electron and hole-hole correlations, these authors
derived an expression for the photoluminescence intensity (proportional to the pho-
ton flux) which is similar to Eq. (25) but not equivalent. A different approach was
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used in Ref. [10], where the author assumed that an electron will tunnel to the near-
est recombination center only. The resulting expression looks again similar, but leads
to a different long-time behavior of the intensity transient. In Ref. [31], the authors
treated the set of spatially separated electrons and holes as Poissonian point distribu-
tions in three dimensions, and derived explicit expressions in an integral form which
is again similar to Eq. (25). The same approach has been used in Ref. [19] for the
two-dimensional case. Many of these existing models basically predict a power law
decay with I (t) ∼ tν with ν varying between −1 and −2 to within a logarithmic
factor. For comparison, we recall that our approach yields I (t) ∼ t−1(log t)−2.

When both radiative recombination and diffusion are taken into account, and the
case of equal mean concentrations 〈n0〉 = 〈p0〉 is considered, we are dealing with the
equations

∂n(r; t)

∂t
= Dn�n(r; t) − n(r; t)

∫
B(|x|)p(r + x; t)dx,

∂p(r; t)

∂t
= Dp�p(r; t) − p(r; t)

∫
B(|x|)n(r + x; t)dx (28)

with the initial concentrations taken as Gaussian white noise. These equations can be
solved for Dn = Dp = D by introducing new functions: m = n − p and s = n + p.
Then,

∂m(r; t)

∂t
= D�m −

∫
B(|x|)[n(r, t)p(r + x, t) − n(r + x, t)p(r, t)] dx

∂s(r; t)

∂t
= D�s −

∫
B(|x|)[n(r, t)p(r + x, t) + n(r + x, t)p(r, t)] dx. (29)

It can be shown that the solution of the first equation is close to the solution of the
diffusion equation ∂n(r, t)/∂t = Dn0(r, t) and has the same long-time asymptotics,
namely, (〈m2〉)1/2 ∼ t−d/4. From this result we conclude 〈n〉 = 〈s〉/2 ∼ 〈|m|〉/2 ∼
(〈m2〉)1/2 ∼ t−d/4. Thus n(t) ∼ t−d/4, and

φ(t) ∼ t−(d/4+1) (30)

remains true when both diffusion and radiative recombination are in the game as we
will show by our simulations.

4 Monte Carlo algorithms

As mentioned in the introduction, the system of Eqs. (4)–(6) has exactly the same struc-
ture as the inhomogeneous Smoluchowski coagulation equations (see, e.g., Ref. [14])
for three distinct species. The Smoluchowski equations may be interpreted probabilis-
tically as an equation generated by Markov chains describing the pair interactions.
In Ref. [14]), we developed a Monte Carlo algorithm which we adapt here to solve
Eqs. (4–6) for the two-dimensional case with d = 2.
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4.1 Radiative recombination only

For simplicity, let us first present the algorithm for the case without diffusion. The
direct simulation assumes that the process of interactions (in our case, the radiative
decay or the capture by recombination centers) is pairwise and Markovian, i.e., having
made a time step, the next time step is simulated independently. The interacting pair
is sampled according to the kernel of the equation B = B0 exp(−|x|/a).

The algorithm can be described as follows (for details see Refs. [14,15,24]). We
do not use any mesh, so our phase space is continuous. The process is simulated in a
square box with size L × L and periodic boundary conditions. Let’s assume that we
know a constant Bmax such that B ≤ Bmax; in our case, we may take Bmax = B0.

0. Put t = 0.
1. Sample n = n0 electrons at random, independently and uniformly distributed in

the box. Do the same for holes and recombination centers. Here n0 is the initial
number of electrons (equal to the number of holes). We denote the current number
of electrons by n, and the current number of holes by p.

2. Choose an electron-hole pair to interact. These pairs are sampled uniformly and
independently, i.e., the electron is sampled from all existing electrons, and the hole
is sampled from all existing holes.

3. Obtain the random time dt between interactions as

dt = − log(rand)/λ, λ = n p Bmax/(2n0).

The current time increases as t := t + dt .
4. Simulate the interaction itself. For the interacting pair sampled, we calculate the

probability that the interaction takes place as Pr = B/Bmax: we generate rand,
a random number uniformly distributed on [0, 1], and if rand ≤ Pr , then the
interaction takes place (e.g., in the case of electron-hole annihilation, we set n :=
n − 1, p := p − 1). Otherwise nothing happens. Then, we go back to step 2.

Note that in our case the constant Bmax = B0 would be too crude, much better is
Bmax = B0 exp(−rmin) where rmin is the minimal distance between any two particles.
The problem is that unlike the constant B0, the majorant Bmax = B0 exp(−rmin) is
changing with time. However, we have to recalculate this majorant only after annihila-
tions (if there are no recombination centers). This technique accelerates the algorithm
significantly.

4.2 Radiative and nonradiative recombination in the absence of diffusion

Let us now turn to the case where also nonradiative recombination centers are present
with a finite concentration. In the first step, we have to choose one of the possible
events: (i) radiative recombination, i.e., direct annihilation of an electron-hole pair,
(ii) an electron is captured by one of the empty recombination centers N+, (iii) a hole is
captured by one of the N −N+ filled recombination centers (if there are any). The latter
processes are described by the probabilities bn exp(−|x|/an), or bp exp(−|x|/ap).
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To unify the notation, we write Bi j = B0 exp(−|ri j |/a) where |ri j | is the distance
between the reacting particles. The next steps are the same as described above. Thus,
the simulation algorithm in the absence of diffusion can be described as follows.

1. Put t = 0, and sample n = n0 electrons and p = n0 holes at random, indepen-
dently and uniformly distributed in the box. Independently, N recombination
centers are also sampled uniformly and mutually independently distributed in
the box. Without loss of generality, assume that N = N+.

2. Sample one of the three possible events: (i) direct (radiative) electron-hole
annihilation, (ii) electron capture by an empty center, (iii) hole capture by a
filled center. To do this, first calculate the majorant frequencies for the three
events:

λ1 = npB0 exp
{
−rnp,min

a

}
, (31)

λ2 = nN+bn exp

{
−rnN+,min

an

}
, (32)

λ3 = p(N − N+)bp exp

{
−rp(N−N+),min

ap

}
, (33)

where rnp,min is the minimal of all possible distances between n electrons and
p holes in the box, rnN+,min the same for the distances between n electrons and
N+ centers, and rp(N−N+),min for the distances between p holes and N − N+
centers.

From these frequencies, calculate the probabilities p1, p2, p3 of the events (i), (ii),
and (iii), respectively: p1 = λ1/λ, p2 = λ2/λ, and p3 = 1 − p1 − p2, where
λ = λ1 + λ2 + λ3.

3. From the probabilities p1, p2, p3, sample the event k = i, i i, i i i , calculate the
time increment as �t = − log(rand))/λk , and calculate t := t + �t .

4. For the sampled event k(= i, i i, i i i), choose uniformly the relevant interacting pair,
and check if the interaction takes place. For instance, if k = i , i.e., the sampled
event happens to be radiative recombination of an electron-hole pair, calculate
P̄np = exp {−r+rnp,min

a }. If rand < P̄np, then the event occurs. Hence, recalculate
n := n − 1 and p := p − 1, and go back to step 2. Otherwise, nothing happens,
the probabilities p1, p2, p3 remain the same, and so return to step 3. Here r is
the distance between the sampled interacting pair. For the case k = i i , when an
electron is captured by the recombination center, put n := n − 1, N+ := N+ − 1,
but when a hole is captured by the recombination center, you have p := p − 1,
N+ = N+ + 1.
If the concentrations n and p are calculated at some prescribed time instances tm ,
m = 1, . . . M , just score the values n(tm), p(tm), m = 1, . . . M . To calculate the
photon flux φ(t), say, at a time t from the interval t ∈ [t1, t2], count M , the number
of electron-hole annihilations which have occurred during this time interval, and
take the approximation I (t) ≈ M/(t2 − t1).

5. To carry out the average, run the steps 1–4 independently, say, ν times, with ν

being a sufficiently large number, and take the arithmetic mean.
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Note that there is no need to recalculate the value rmin after each annihilation or
capture in the recombination center: this should be done only if the pair with rmin reacts.

4.3 Radiative and nonradiative recombination in the presence of diffusion

In the general case when the electrons and holes not only recombine, but also diffuse,
the algorithm becomes more sophisticated. In our case, a realistic assumption is that
the holes are immobile because of their large mass in group III-nitrides [32], so we take
Dp = 0, and Dn = D. Usually, we would consider diffusion to occur by microscopic
random jumps according to the law dl = ω

√
D dt , where dl is the length of the

random jump, ω is a random (isotropic) direction, and D is the diffusion coefficient.
However, since the time between individual annihilation events may be very large
compared to dt , a huge number of diffusion jumps would be required to simulate the
electron-hole dynamics.

To accelerate this algorithm, we employ the random walk on spheres (see, e.g.,
Ref. [23]). The idea behind this method is simple. Around each electron, we construct
a disk of maximal radius which does not contain any hole or recombination center.
We then simulate the random exit times τk of electrons from these disks. We chose the
electron which has a minimal exit time, and let this electron jump out of the disk, so that
the new random position of the electron is uniformly distributed on the boundary of
this disk. The distribution of the exit time is known, and we are thus able to simulate
the random time dt according to this distribution, giving us the time t := t + dt .
Note that this approach, in a slightly different formulation, is used in many physical
applications (see, e.g., Refs. [6,17,20]).

For a unit disk, the exit time distribution of the standard Wiener process has the
series representation [22]

H(t) =
∞∑

k=1

2

jk J1( jk)
exp {− j2

k t/2} (34)

where J1 is the Bessel function, and jk are the positive zeros of the Bessel function J0.
It is sufficient to simulate the exit times from a unit disk, since for the Wiener process,
the exit time τr from a disk of radius r has the property τr = r2τ1. The standard Wiener
process corresponds to D = 1/2, so in our case the random exit time is simulated as
τr = r2τ1/2D.

To simulate the exit times according the Eq. (34), we tabulated this distribution,
and used Walker’s algorithm (we have presented an efficient implementation of this
method in Ref. [27]) which uses only one sample of rand to generate one sample of τ1.

Note that in the diffusion-controlled case, our model described by Eqs. (4)–(6)
should be modified to account for the recombination of an electron and hole at distance
x = 0 (which is physically equivalent to the formation and radiative decay of an
exciton). Since the radiative decay of an exciton is orders of magnitude faster than
any other process in the problem, we consider this process to be instantaneous. The
same applies for the case when an electron and a hole are in the same location as a
recombination center. In terms of Eqs. (4)–(6), the kernels B, bn and bp should include
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a singular part, such that the modified kernel B ′ has the form B ′ = βδ(|x|) + B(|x|)
where δ is the Dirac delta-function and β ∝ Dn is a constant characterizing the
recombination rate for a vanishing distance |x|.

The general code described in Sect. 4.2 above remains the same. We have only to
sample, in addition, the forth event that an electron makes a jump with the random
time τk . Let τmin be the minimal time among all τk, k = 1, 2, . . . Then, introducing
λ4 = 1/τmin, λ = ∑4

i=1 λi , the probabilities are calculated as pi = λi/λ.

5 Simulation results and comparison

In this section, we present the results of our simulations and compare the different
approximations and methods described above. Our simulations are adapted to take
place on a spatial and temporal scale comparable to the experiment. Hence, we use
nm and ns as natural units. Specifically, the characteristic tunneling distance a is given
in nm, the recombination rate B0 in ns−1, the diffusion coefficient in nm2 ns−1, and
the photon flux transients are calculated for times up to 1012 ns.

Initial conditions are set by assuming that the concentrations n0 = p0 as well as
N are all randomly, independently and uniformly distributed in a two-dimensional
box of size L × L = 2000 × 2000 nm2. For the Monte Carlo simulations, the results
detailed below was obtained by averaging over ν runs which corresponds to ν indepen-
dent initial configurations with ν varying between 400 and 2,000. Except otherwise
mentioned, the calculations were done assuming a = 2 nm, B0 = 0.04 ns−1, and
n0 = 2.5 × 10−3 nm−2.

Figure 1 compares a Monte Carlo simulation of the transient photon flux produced
by the purely radiative recombination of electrons and holes with the solutions obtained

Fig. 1 (online colour) Comparison of photon flux transients for purely radiative recombination of spatially
separated and immobile electrons and holes calculated by means of the two different mean-field equations
derived in Sect. 3 and the Monte Carlo approach outlined in Sect. 4.1. The recombination-controlled
asymptotics are indicated by the thin black lines with the dimensionless parameter τ = B0t .
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(a) (b)

(c) (d)

Fig. 2 (online colour) Photon flux transients obtained by Monte Carlo simulations of the recombination-
diffusion kinetics of spatially separated electrons and holes. The solid blue curve is the same in all figures
and has been obtained with B0 = 0.04 ns−1, a = 2 nm, n0 = 2.5 × 10−3 nm−2, N = 0, and Dn =
Dp = 0. The parameters changed for each of the other transients are indicated in the respective figures. a
Transients for purely radiative recombination calculated for different initial electron-hole densities n0 in
nm−2. b Transients for simultaneous radiative and nonradiative recombination with different densities N
of nonradiative centers in nm−2. c and d Transients for the radiative recombination of electrons and holes
with different electron diffusivities Dn in nm2 ns−1. The diffusion-controlled asymptotics is indicated by
the black dashed line. In (c), recombination of electrons and holes is assumed to occur instantaneously
when they meet at |x| = 0 (i.e., the contribution of tunneling is set to zero). In (d), electrons and holes may
also recombine via tunneling with B0 = 0.04 ns−1

by the equations derived in Sect. 3 [Eqs. (25), (20)–(22)]. To ensure that we enter the
asymptotic behavior of these solutions, the transients were calculated for a time up
to 1012 ns. The Monte Carlo simulation is seen to be close to the transient obtained
by Eqs. (20)–(22). The relevant two asymptotics are in perfect agreement with the
numerical results as shown in the figure.

Figures 2a–d show Monte Carlo simulations illustrating the impact of various para-
meters entering our model. Figure 2a shows transients obtained for four different values
of the initial electron and hole density n0. The transients are affected primarily at short
times, while they converge at long times approaching the recombination-controlled
asymptotics. In Fig. 2b, we vary the density of nonradiative recombination centers.
Here, the decay at short times remain unaffected but nonradiative recombination accel-
erates the decay at times between 1 µs and 1 ms.
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Fig. 3 (online colour) Photoluminescence transients for purely radiative recombination of spatially sepa-
rated electrons and holes calculated by means of Eq. (25) and the Monte Carlo approach outlined in Sect. 4.1.
The recombination-controlled asymptotics are indicated by the thin black lines. The transient obtained by
the Monte Carlo approach closely approximates the experimentally observed behavior for (In,Ga)N/GaN
quantum wells in Ref. [4]

Figures 2c, d address the impact of the diffusion of electrons. In both cases, dif-
fusion speeds up the initial decay significantly, and ends up in a diffusion-controlled
asymptotics ∼ t−3/2 already for very small diffusion coefficients. The inclusion of
radiative recombination by tunneling in Fig. 2d results only in subtle changes of the
overall dynamics. For diffusion coefficients larger than 1 nm2 ns−1, the transients are
basically identical. In these cases, electrons and holes will meet each other by diffu-
sion and decay as an exciton faster than they are able to recombine radiatively via the
inefficient tunneling process.

Finally, Fig. 3 shows transients for parameters chosen such as to approximate exper-
imental results. For a = 4 nm, B0 = 0.04 ns−1, and n0 = 0.025 nm−2, we obtain a
transient close to that shown in Ref. [4]. In particular, note the characteristic acceler-
ation of the transient at intermediate times, followed by the slowdown at times longer
than 300 ns. This behavior is not as pronounced in the solution of the approximate
model represented by Eq. (25). To distinguish these two models experimentally, how-
ever, requires measurements with a high signal-to-noise ratio over at least five orders
of magnitude of intensity, such as indeed presented in Ref. [4]. For unambiguously
determining the functional form of the asymptotics, even this measurement range may
not suffice.

6 Summary and conclusion

We have developed an efficient Monte Carlo algorithm for the simulation of the
electron-hole recombination and diffusion dynamics in the presence of nonradiative
recombination centers in disordered media. To do so, we have described the concen-
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trations of electrons, holes and recombination centers by a system of nonlinear Smolu-
chowski equations, and we have used a probabilistic interpretation of these equations
to construct a suitable Monte Carlo algorithm. To avoid the time-consuming simu-
lation of microscopic diffusion jumps, we have developed a variant of the ”Random
Walk on Spheres” technique which accelerates the algorithm significantly. To validate
this algorithm, we have performed a statistical analysis based on the derivation of
equations for the electron-electron, hole-hole, and electron-hole correlation functions.
This analysis has also allowed us to derive the long-time asymptotics of the solu-
tion. We have performed simulations reproducing the experimental data available for
(In,Ga)N/GaN quantum wells, the materials system used for solid-state lighting. We
have shown that our model can reproduce these data, and we have presented simula-
tions predicting the electron-hole dynamics for various different conditions which are
experimentally accessible.
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